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The development and application of three-dimensional unstructured hierarchical
spectral/hpelement algorithms has highlighted the need for efficient preconditioning
for elliptic solvers. Building on the work of Bica (Ph.D. thesis, Courant Institute,
New York University, 1997) we have developed an efficient preconditioning strategy
for substructured solvers based on a transformation of the expansion basis to a low-
energy basis. In this numerically derived basis the strong coupling between expansion
modes in the original basis is reduced thus making it amenable to block diagonal
preconditioning. The efficiency of the algorithm is maintained by developing the new
basis on a symmetric reference element and ignoring, in the preconditioning step,
the role of the Jacobian of the mapping from the reference to the global element. By
applying an additive Schwarz block preconditioner to the low-energy basis combined
with a coarse space linear vertex solver we have observed reductions in execution time
of up to three times for tetrahedral elements and 10 times for prismatic elements when
compared to a standard diagonal preconditioner. Full details of the implementation
and validation of the tetrahedral and prismatic element preconditioning strategy are
set out below. c© 2001 Academic Press

1. INTRODUCTION

The development of unstructured solvers based on the spectral/hp element method has
permitted a broader range of challenging problems to be addressed using automated mesh
generation. In the context of computational fluid dynamics these methods provide high
spatial accuracy and good phase properties when the solution is smooth; these properties
make them very suitable for incompressible flow problems.

We consider anhp discretization where ‘h’ denotes the size of an elemental subdomain
and ‘p’ represents the polynomial order within each element. This discretization has been
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applied to the incompressible Navier–Stokes equations in three dimensions using a splitting
approach [2]. After we apply a time discretization which decouples the viscous and inviscid
parts of the operator, the most computationally intensive parts of the solver are a series of
elliptic solves, namely one Poisson solve and three Helmholtz solves, which are performed
at each time step. Each of these elliptic solves is preconditioned with an iterative substruc-
turing type domain decomposition method which takes advantage of the natural splitting
of the basis into interior, face, edge, and vertex basis functions. Currently once a suitable
computational mesh has been generated the limiting computational cost of the algorithm is
the solution of the four elliptic problems.

As noted by several authors, special care must be taken in three dimensions in order to
produce a method which is scalable with respect toh and p. In this paper we consider a
preconditioning approach similar to that adopted by Mandel [3] for structured hexahedral
domains and investigated for unstructured domains by Bica [1]. In the current investigation
we develop a set of numerically evaluated low-energy basis functions calculated by solving
a local elliptic problem on a regular reference element. Unlike the approach of Bica, the low-
energy basis functions are then applied to the global elements that constitute the solution
mesh. The resulting method is quasi-optimal in terms of iteration count and is computa-
tionally efficient due to its local construction. The method is then extended to treat hybrid
domains of tetrahedral and prismatic elements. We have demonstrated by numerical exper-
iments that for the solution of a standard Poisson equation the low-energy preconditioner
significantly reduces the number of iteration counts as well as produces improvements of
up to a factor of 10 in the computational solve time for typical polynomial orders.

In Section 2 we discuss the change of basis from an analytically defined expansion [4] to
the new low-energy basis detailing the motivation behind the transformation and illustrate
how to numerically implement the method. Section 3 then demonstrates some numerical
tests on both regular and irregular regions. In Section 4 we provide a summary of our
conclusions.

2. FORMULATION

We consider the elliptic boundary value problem

∇2u(x, y, z)+ λu(x, y, z) = f (x, y, z) (1)

supplemented with appropriate Neumann or Dirichlet boundary conditions. As is standard
practice in the spectral/hp element method approach [5] we approximate our solution as a
piecewise polynomialuδ(x) using the Galerkin discretization of Eq. (1); i.e., finduδ ∈ V δ

such that

L(v, u) =
∫
Ä

∇vδ · ∇uδ + λvδuδ dx =
∫
Ä

vδ f dx ∀vδ ∈ V δ. (2)

The solution domainÄ is assumed to be tessellated intoNel nonoverlapping elemental re-
gionsÄe of polymorphic shapes consisting of hexagons, prisms, pyramids, and tetrahedrons
such that

e=Nel⋃
e=1

Ǟe = Ǟ.
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Each of the elemental regions is mapped to a standard region within which we construct a
polynomial expansion.

The choice of the expansion base is relevant to the following discussion. Accordingly it
is worth discussing the different approaches currently adopted in the spectral element and
p-type finite element communities. The traditional approach within the spectral element
community [6–8] has been to adopt a nodal tensorial expansion basis within structured sub-
domains (i.e., quadrilaterals or hexahedral elements). These bases are typically constructed
from Lagrange polynomials through Gauss–Lobatto–Legendre quadrature points. Within
the p-type finite element community the typical approach for structured subdomains has
been to adopt a modal or hierarchical tensorial expansion basis. Typically these expansion
bases, in one dimension, use the standard (nonhierarchical) linear, finite element modes
which are then supplemented with hierarchical polynomial functions based on the integral
of Legendre polynomials [9–11] or equivalently Jacobi polynomials with weights of (1, 1)
[4, 12].

For unstructured subdomains, such as triangles and tetrahedrons, the use of a standard
tensor product of one-dimensional expansions leads to a basis whose dimension is larger
than the polynomial space supported by the expansion. Therefore such an approach would
lead to a redundant system (in terms of polynomial space) which can cause undesirable
time-step restrictions when treating convectively dominated problems [13]. To generate
a nonredundant system within unstructured subdomains the use of modal expansions has
been preferred [4, 10, 12]. However, more recently nontensorial nodal bases for triangular
regions have also been proposed [14–16].

As previously mentioned the following paper is based upon the doctoral work of Bica
who considered a modal expansion for tetrahedral domains [1]. A similar approach was
also proposed by Mandel for structured subdomains [3].

2.1. Change of Basis

The discussion in this section is independent of the particular polynomial basis being
used. We note however that in the remainder of this work we have adopted the basis defined
in [5, 17, 18]; see Section 2.2.

Let81 and82 represent two complete bases in the discrete space,V δ. We introduce the
two Helmholtz matricesH1,H2 such thatH1[i, j ] = L(ϕ1i , ϕ1 j ), whereϕ1i andϕ1 j are
two arbitrary elements of basis81; H2 is defined analogously.

For uδ ∈ V δ, let û1i andû2i be thei th coefficients ofuδ when expanded in terms of the
two bases; i.e.,

uδ(x) =
dim(V δ)∑

i=1

û1iϕ1i (x) =
dim(V δ)∑

j=1

û2 jϕ2 j (x). (3)

Since we have chosen81,82 both to lie in the same discrete spaceV δ we can represent
one basis in terms of the other

ϕ2 j (x) =
dim(V δ)∑

i=1

ϕ̂ j i ϕ1i (x), (4)

whereϕ̂ j i is the i th coefficient corresponding to the expansion modeϕ1i (x) which when
summed overi is identical to the expansion basisϕ2 j (x).
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Definingϕ1(x) as the vector of bases functions (i.e.,ϕ1[i ] = ϕ1i (x)) and similarlyϕ̂j as
a vector of expansion coefficients (i.e.,ϕ̂j [i ] = ϕ̂ j i ) then Eq. (4) can be written in vector
form as

ϕ2 j (x) = [ϕ̂j ]
Tϕ1(x).

We now introduce a matrixC whose rows are the vectors [ϕ̂j ]T . We note that this matrix
transforms from basis81 to82 since

ϕ2(x) = Cϕ1(x), (5)

whereϕ2(x) is defined analogously toϕ1(x). Similarly the matrixC−1 transforms the basis
82 to81.

If we now write Eq. (3) in vector form to obtain

u = [û1]Tϕ1(x) = [û2]Tϕ2(x), (6)

whereû1[i ] = û1i , û2[i ] = û2i then substitute Eq. (5) into Eq. (6) we obtain

[û1]Tϕ1(x) = [û2]TCϕ1(x)

and so

û1 = CT û2. (7)

The matrixCTcan therefore be interpreted as a transformation from the expansion coeffi-
cientsû2 to û1.

Finally recalling the bilinear energy asL(·, ·),

L(u, u) =
∫
Ä

∇u · ∇u+ λu2 dx

we can expressL in terms of the Helmholtz matrices as

L(u, u) = [û1]TH1û1 = [û2]TH2û2.

Applying the transformation (7) we obtain

[û2]TCH1CT û2 = [û2]TH2û2,

and soH2 = CH1CT and equivalentlyH1 = C−1H2C−T .
Notice that81 and82 could be bases of two different spacesV2 ⊂ V1, whereV2 6= V1.

The expressionH2 = CH1CT would still be valid, but notH1 = C−1H2C−T , for rank defic-
iency reasons.

At this juncture it can be appreciated that although an initial choice of basis81 may lead
to an undesirable Helmholtz matrixH1, we can obtain a more suitable Helmholtz matrix
H2 by an appropriate choice of the matrixC or equivalently by transforming the basis.
The suitability of the matrix is related to the ease at which it can be preconditioned. From
the point of view of implementation, a block diagonal preconditioner can be an efficient
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choice. We are therefore motivated to defineC so that it results in a Helmholtz matrixH2

that is as near as possible to being block diagonal. In our case, we follow the work of Dryja
et al. [19]; these authors have already observed, in theh-version of the finite element, that
the theory points to a deterioration of the performance of the block diagonal preconditioner
when applied to a problem in three dimensions. They propose adding a diagonal part to the
preconditioner, which acts on functions with small energy associated to the vertices. This
idea has been implemented for modal expansions in [20]. In this paper we adapt those ideas
and those of Bica [1] to the basis used in theNεκT αr code.

We are left with the question of how to determine the matrixC. For convenience of
implementation the choice of our original basis81 is usually based on an analytic definition
of a polynomial set, in a mapped region. However, it is unlikely that an optimal choice of
C can be expressed in terms of another simple closed form polynomial basis. We therefore
accept that the new basis82 needs to be generated numerically. The implementational
efficiency of the spectral/hp element method is derived from the decomposition of the
global expansion into elemental regions. It is essential that this property is maintained in
our new expansion basis82. The details of the numerical implementation will be discussed
in Section 2.4.1.

2.2. Decomposition of the Expansion Basis and Substructuring

Figure 1 illustrates the modal decomposition adopted in the current work. We assume the
solution domain is decomposed into contiguous nonoverlapping elemental domains which
are tetrahedrons in Fig. 1a. Within each elemental domain the solution is then expanded in
terms of a complete polynomial expansion of arbitrary order. The construction of a suitable
expansion basis is essential to the efficient implementation of the numerical methods; see
Section 2.1. As we are interested in solving second-order, partial differential equations
when the elemental polynomial expansions are assembled into a global approximation we

FIG. 1. Illustration of the modal decomposition: (a) decomposition of the solution domain into tetrahedral
elements, (b) representative modes from a third-order polynomial expansion indicating vertex, edge, face, and
interior modes.
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require the resulting piecewise polynomial function to be inH1. This can be guaranteed by
using aC0-continuous expansion, which is obtained by decomposing the expansion basis
into interior and boundary modes, and matching the boundary modes across the interface
of the elements.

The interior modes are defined as having support within the interior of the elemental re-
gion. The boundary modes are the remaining modes required to ensure a complete expansion
basis. The boundary modes are decomposed into three different components comprising
vertex, edge, and face modes. Face modes are defined as having support on a single face and
the interior of the elemental domain and vanishing on all other faces, edges, and vertices.
Edge modes are defined as having support on a single edge, the adjacent faces, and the
interior of the elemental domain. An edge mode is therefore zero on all the other edges,
nonadjacent faces, and at the vertices of the elemental domain. Finally, vertex modes are
defined as having support at a single vertex and on the surrounding edges and faces, and
the interior of the element. A vertex mode is therefore zero on all nonadjacent edges and
faces as well as the remaining vertices. The combination of vertex and edge modes are
collectively known as the wirebasket frame. Under the above definition it does not matter
whether the expansion basis is modal or nodal although our motivation is to derive a good
preconditioner for the modal expansion basis. For a full definition of the modal expansion
basis adopted in this work see [4, 5, 17].

Having defined the boundary and interior modes we can use the property of the expansion
basis to decompose our linear algebra problem using a manipulation known as static con-
densation or substructuring. The discrete form of our Galerkin problem (2) can be written
in matrix form as

Hû = f ,

whereH is the Helmholtz matrix,̂u is the vector of expansion coefficients of the polynomial
approximation to the solution, andf is the inner product of the forcing functionf (x) with
the expansion modes modified to incorporate the boundary conditions. If we now decompose
theHû andf into contributions associated with the boundary and interior modes we obtain[

Hbb Hbi

H ib H i i

][
ûb

ûi

]
=
[

f b

f i

]
, (8)

where the subscriptsb andi refer to the boundary and interior degrees of freedom, respec-
tively. The boundary and interior degrees of freedom can be solved in a decoupled manner
if we statically condense the system by premultiplying Eq. (8) by[

I −Hbi [H i i ]−1

0 I

]
,

arriving at [
Hbb− Hbi [H i i ]−1H ib 0

H ib H i i

][
ûb

ûi

]
=
[

f b − Hbi [H i i ]−1 f i

f i

]
. (9)

This technique, otherwise known as substructuring, allows us initially to solve the top row
of Eq. (9) for the boundary degrees of freedom. Having determined the boundary degrees of
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freedomûb we can use the second row of Eq. (9) to solve for the interior degrees of freedom
ûi . From the point of view of linear algebra it is not evident that such a manipulation is
advantageous. However, if we recall the definition of the interior degrees of freedom, which
vanish on the elemental domain boundaries and within all other elemental domains, we
can conclude that the matrixH i i is block diagonal. Therefore this matrix is easily inverted.
Accordingly, the substructuring has reduced our problem to solving the boundary problems

Sûb = [Hbb− Hbi [H i i ]
−1H ib]ûb = f b − Hbi [H i i ]

−1f i ,

whereS= Hbb− Hbi [H i i ]−1H ib is known as the Schur complement matrix.
The decoupling of the interior blocks also has the advantage that the Schur complement

matrix can be constructed at an elemental level. We can therefore iteratively solve the Schur
complement system and it is this system that we wish to precondition. For the Helmholtz
problem (1) the matrixH is positive definite providedλ > 0. Since the Schur complement
is the stiffness matrix associated with a subspace of the space generated by the original
basis, its condition number is bounded by the condition number of the full matrixH and is
typically far better.

A disadvantage of this approach is the additional expense of constructing the Schur com-
plement matrices. For a single matrix solve this can outweigh the advantages of solving a
better conditioned system. However, for our problem of interest, we wish to solve the ma-
trix system repeatedly as part of an unsteady solution to the Navier–Stokes equation. The
computational cost of constructing and storing the Schur complement matrix is therefore
outweighed by the number of solves. We remark that an alternative but equivalent interpre-
tation of the substructuring approach is that we have numerically changed the basis so that
the boundary degrees of freedom are orthogonal to the interior degrees of freedom in the
energy inner productL(·, ·).

We now wish to restrict our attention to preconditioning only the Schur complement
system since the interior degrees of freedom are dealt with by a direct solver such as
Cholesky factorization. If we define our transformation matrixC as

C=
[

R 0
0 I

]
and statically condense the matrix systemH2 = CH1CT we find that the Schur complement
of H2 is related to the Schur complement ofH1 by

S2 = RS1RT ,

whereS1,S2 are the Schur complements ofH1 andH2, respectively. Our task is now to
determine an appropriate choice ofR.

2.3. Study of the Couplings between the Blocks of the Helmholtz Matrix

For a two-dimensional modal expansion, block diagonal preconditioning of the Schur
complement system leads to a preconditioned system with a condition number that grows
polylogarithmically with polynomial order [3, 21, 22]. This preconditioner uses the complete
block corresponding to all vertex modes and the diagonal blocks corresponding to the modes
along each individual edge. However, an analogous approach in three dimensions, where
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the preconditioner is constructed from the blocks of vertex, edge, and face modes, does not
produce favorable results. Even considering the complete wirebasket space of all vertex
and edge modes as a single block still does not produce a very effective preconditioner. As
we will see this is because the couplings between the face and the wirebasket parts of the
Schur complement matrices are relatively strong.

In order to illustrate this point, we study the preconditioning of a single elemental tetra-
hedral region as previously studied by Bica [1]. A similar approach was also adopted by
Babuškaet al. for the quadrilateral element [23]. We consider the Helmholtz problem (1)
with λ = 0 and construct the Schur complement matrix for a single reference element
{−1≤ x, y, z; x + y+ z≤ −1}. To ensure that we do not have a singular problem we
apply Dirichlet boundary conditions to all vertex modes. We denote the Schur complement
with Dirichlet boundary conditions by

SDV =
[

Sww Sw f

Sfw Sf f

]
,

whereSww denotes all the couplings between the wirebasket modes which just contain
the edges for this problem.Sf f contains all the couplings between the face modes and
Sw f = ST

fw represents the couplings between the wirebasket and face modes.
The first test we consider is the growth with polynomial order of the condition number

of the matrix

S−1
ww+ f f SDV ,

whereSww+ f f

Sww+ f f =
[

Sww 0

0 Sf f

]
.

This test illustrates the relative importance of the coupling between the wirebasket and
faces.

In the next test we consider a similar approach to determine the strength of the coupling
between the four faces. If we letSf1 f1,Sf2 f2,Sf3 f3,Sf4 f4 be the block diagonals ofSDV ,
which correspond to the modes on each of the four faces, we can find the condition number
of

S−1
f bSf f ,

where

Sf b =


Sf1 f1 0 0 0

0 Sf2 f2 0 0

0 0 Sf3 f3 0

0 0 0 Sf4 f4

 .

Similarly, to determine the strength of the coupling between the edges we denote bySei ei

a diagonal block ofSDV which corresponds to the modes within edgeei and compute the



402 SHERWIN AND CASARIN

condition number of

S−1
wbSww,

where

Swb =


Se1e1 0 0 0

0 Se2e2 0 0

0 0 Se3e3 0

0 0 0 Se4e4

 .

A final test is to consider the full block diagonal decoupling, i.e.,

S−1
wb+ f bSDV ,

where

Swb+ f b =
[

Swb 0

0 Sf b

]
.

The growth rate of theL2 condition number ofS−1
ww+ f f SDV andS−1

wb+ f bSDV as a function
of polynomial order is shown in Fig. 2 and the condition number ofS−1

wbSww andS−1
f bSf f

are shown in Fig. 3. The condition number was evaluated as the ratio of the maximum and
minimum eigenvalue which were computed using LAPACK [24]. From these figures it is
evident that the strongest coupling is between the wirebasket and face modes and has an
approximate asymptotic growth rate ofO(P2.5) as shown in Fig. 2.

In contrast the block diagonal preconditioning of the wirebasket and face modes is rel-
atively well behaved and the numerical tests indicate a potentially sublinear growth rate.

FIG. 2. Condition number growth ofS−1
ww+ f f SDV andS−1

wb+ f bSDV versus polynomial order. (a) Lin–lin axis
and (b) log–log axis.
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FIG. 3. Condition number growth ofS−1
wbSww and S−1

f bSf f versus polynomial order. (a)Lin–lin axis and
(b) log–log axis.

Clearly the objective of the change of basis will be to weaken the coupling between the
wirebasket and face modes and this is the focus of Section 2.4.

Finally we note that these experiments are dependent upon the expansion basis; the results
shown in Figs. 2 and 3 have been obtained using the basis defined in theNεκT αr code
[5, 17].

2.4. Construction of the Low-Energy Basis

We recall that

S2 = RS1RT .

Adopting the notation introduced in Sections 2.1 and 2.2, and considering the experiments
referred to in Section 2.3, our goal is to find a basis82 spanning the same space as our
initial basis81, which decouples the face mode contribution from the wirebasket modes.
This decoupling would makeS2 block diagonal, however, and to avoid a very expensive
transformation we impose the additional requirement that only the edge and vertex functions
are modified in the change of basis.

Consider a single elemental matrix and the transformation of basis which arises from a
matrixR of the form

R=

 I Rve Rv f

0 I Ref

0 0 I

 ,
where we have assumed that vertex modes are listed first followed by the edge and then
the face modes. The matricesRve,Rv f represent the modification of the vertex modes by
the edges and face modes. Similarly the matrixRef represents the modification of the edge
modes by the face modes. We note that this matrix has a very straightforward inverse due
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to the upper triangular form of the matrix which is of the form

R−1 =

 I −Rve −Rv f + RveRef

0 I −Ref

0 0 I

 .
In the work of Bica [1] and Mandel [3] the submatrixRve was set to zero. For descriptive
convenience we define

R=
[

I Rv

0 A

]
,

where

Rv = [ Rve Rv f ], A =
[

I Ref

0 I

]
.

Now if we denote the original Schur complement of the Helmholtz matrix as

S1 =
[

Svv Sv,ef

ST
v,ef Sef,ef

]
=

Svv Sve Sv f

ST
ve See Sef

ST
v f ST

ef Sf f


then under the change of basisS2 = RS1RT we obtain

S2 =
[

Svv + RvSv,ef + Sv,efRT
v + RvSef,efRT

v

[
Sv,ef + RT

v Sef,ef
]
AT

A
[
Sv,ef + Sef,efRT

v

]
ASef,efAT

]
, (10)

where

ASef,efAT =
[

See+ Rv f Sef + SefRT
v f + Rv f Sf f RT

v f Sef + RT
v f Sf f

Sef + Sf f RT
v f Sf f

]
. (11)

If we consider the coupling between the vertex modes with the edge and face modes
shown in Eq. (10) we see that to completely orthogonalize these modes we require that

ST
v,ef + Sef,efRT

v = 0

or

RT
v = −S−1

ef,efS
T
v,ef . (12)

Similarly to decouple the edge modes from the face modes we see from inspecting Eq. (11)
that

RT
ef = −S−1

f f ST
ef . (13)

We note that on an elemental region, the use of Eq. (13) corresponds to the use of edge
modes with the same traces as the original ones, modified in the interior of the faces to have
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the lowest possible energy within the polynomial space. However, decoupling the basis
using Eqs. (12) and (13) to formR would destroy the boundary decomposition of the vertex
and edges modes. We recall from Section 2.2 that the edge modes are defined as having
support along a single edge and the two adjacent faces. The edge modes are therefore zero at
all vertices and along all other edges and faces. The use ofS−1

f f in the Eq. (11) would create
a new basis where an edge mode would have support along all faces. This is not a problem
when treating a single element. The decomposition of the boundary modes is, however,
important when generating a piecewise continuous global expansion from an elemental
region. If we alter the support of the boundary modes, it becomes considerably harder to
generate a global expansion from the elemental definitions. Apart from the issue of global
assembly a change of basis of this form would also be extremely difficult to implement for
a general mesh. This complexity arises from the fact that there can be a high multiplicity of
face modes around any specific edge and so assembling the local matricesS−1

f f would not
be significantly easier than directly inverting the problem.

To overcome these problems we need to reconsider the most appropriate decomposition
for construction of our new basis. Reviewing the form of the edge modes we find that we can
decouple a specific edge only from its two adjacent faces if we do not wish to alter its support.
This type of local decoupling, however, does not circumvent the problem of multiple faces
being adjacent to any edge in a global mesh. Nevertheless if we consider the decoupling
of the local faces from the edges within a standard symmetrical region we can then apply
the new, local basis to all global elements. This does, however, require that the shape of the
new edge and vertex modes within adjacent faces maintains the same rotational symmetry
as the original basis. This can be ensured by using a rotationally symmetric standard region
provided the operator under consideration is isotropic. Using a standard region to construct
the basis means that we do not take account of the Jacobian of the mapping between the
global element and the standard region. Accordingly the edges in the global mesh will not
be completely decoupled from the surrounding elements. However, as we shall demonstrate
from numerical tests, the new low-energy basis generates a Schur complement matrix which
can be spectrally approximated by its block diagonal contribution. Using the block diagonal
as a preconditioner therefore leads to a preconditioned system with a favorable condition
number which grows polylogarithmically with the polynomial orderP.

Following a similar argument for the vertex modes we can locally decouple each vertex
mode from the edges and faces which are adjacent to the vertex without destroying the
assembly properties of the expansion. In other words, we orthogonalize the edge and vertex
modes with respect to the face modes using an inner product based on the geometry of
the standard region and disregarding the Jacobian of the mapping. The new functions will
not be exactly orthogonal in the inner product induced by the global Helmholtz matrix,
but it will retain enough orthogonality for the new basis to be useful for block diagonal
preconditioning. The remainder of this section will therefore focus on the construction of
the locally decoupled edge and vertex modes.

2.4.1. Numerical construction of the low-energy transformation matrixR. Perhaps the
most abstract aspect of the formulation so far is the determination of the transformation ma-
trix R in a numerical implementation. To illustrate this process we start from the assumption
that we have already calculated the local Schur complement matrixS1 (see [5] for further
details on this construction). As before we assume that this matrix is ordered so that the
vertex modes are listed before the edge modes which are followed by the face modes.
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FIG. 4. Numbering of vertices, edges, and faces within a standard region of an equilateral tetrahedron.

We introduce an edge and face numbering scheme for the standard rotationally symmetric
region of an equilateral tetrahedron as shown in Fig. 4. The construction of the submatrix
RT

ef to orthgonalize the local edge 2 from faces 1 and 3 is illustrated in Fig. 5. Initially
we extract the submatrices fromSf f corresponding to inner products of modes on faces
1 and 3 within themselves as well as the coupling matrix between the two faces. This
matrix of face coupling is then inverted and multiplied by the submatrices ofST

ef which
correspond to the coupling between edge 2 and faces 1 and 3. The nonsquare resultant
matrix then forms a submatrix of transformation matrixRT

ef . Performing the same operation
for all six edges and their corresponding adjacent faces leads to the full construction of
RT

ef and involves only relatively straightforward operations once the matrixS1 has been
generated.

The assembly of the componentsRT
v of the transformation matrix as schematically il-

lustrated in Fig. 6, follows a similar construction. In this figure we have considered the
construction of the submatrices corresponding to the coupling between vertex 1 with edges
1, 2, 4 and faces 1, 2, 4. For every vertex mode we have to construct and invert the submatrix
corresponding to the coupling between edges 1, 2, 4 and faces 1, 2, 4 and then multiply this by
the submatrix representing the coupling between vertex 1 and the adjacent edges and faces.

One way of interpreting the low-energy edge modes is as the solution to the Schur
complement problem within the symmetric standard region. The boundary conditions to
the problem are zero Dirichlet boundary conditions on the nonadjacent vertices, faces, and
edges and a unit Dirichlet boundary condition on the mode under consideration. The solution

FIG. 5. Schematic representation of the construction of a submatrix ofRT
ef corresponding to the coupling of

edge 2 with faces 1 and 3 as defined in Fig. 4.
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FIG. 6. Schematic representation of the construction of a submatrix ofRT
ve andRT

v f corresponding to the
coupling of vertex 1 with edges 1, 3, 4 and faces 1, 2, and 3 as defined in Fig. 4.

to the problem or equivalently the shape of two low-energy modes is shown in Fig. 7. In
Fig. 7a, zero Dirichlet boundary conditions have been imposed on face 1, edges 1, 2, and
3 and vertices 1, 2, and 3 while a unit Dirichlet condition has been imposed on vertex 4.
The change in shape should be compared with the original projected vertex mode shown
in Fig. 7b. In Fig. 8 we show the scatter plot of the magnitude of the Schur complement
of the original expansion basisS1 and the low-energy basisS2 = RS1RT plotted on the
same scale. From this plot we see that the energy of the vertex modes in the original
basis is noticeably higher than that of the rest of the diagonal contribution. Another strong
contribution, however, exists between the edge modes and vertex modes as denoted by the
energetic contributions at the edge of the plot. In contrast the low-energy basis in Fig. 8b,
which has been scaled by a factor of 4, is far more diagonally dominated. We note that
the diagonal face contribution is the same in both matrices. Both of these examples were
evaluated at a polynomial order ofP = 5.

FIG. 7. Projected mode shape of vertex 4 (a) low-energy and (b) original basis. The polynomial order was
P = 5.
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FIG. 8. Scatter plot of Schur complement matrices of aP = 5 polynomial expansion: (a) Original basis and
(b) low-energy basis (scaled by a factor of 4).

2.5. Extension to Hybrid Subdomains

Although tetrahedral subdomains permit a greater flexibility in automatically generating
meshes, there are regions, such as the boundary layer of a viscous flow, where other geomet-
ric shapes are more attractive. If we use prismatic subdomains in the boundary layer where
the triangular faces of the prisms touch the surface of the body the flexibility of automated
surface mesh generation is maintained but better resolution in the surface normal direction is
provided. We therefore require low-energy bases for hybrid elemental regions consisting of
tetrahedrons, prisms, pyramids, and hexahedrons for which conforming hierarchical bases
already exist [17, 18].

For an elemental region of any tetrahedral, pyramidic, prismatic, or hexahedral shape
the boundary transformation matrixR can be constructed in a way similar to the technique
described for tetrahedral elements in Section 2.4. The analytically defined boundary modes
applied within hybrid subdomains [17, 18] have similar modal shapes along edges and faces.
This is necessary to enforceC0 continuity in the global expansion with minimal effort.
We have seen that when developing the transformation matrixR for the tetrahedron, the
choice of a rotationally symmetric standard region is sufficient to ensure that the low-energy
expansion basis maintains shape similarity between edges and faces. For example, the shape
of the low-energy mode on vertex 1 will have a shape similar to the low-energy mode on
vertex 2 along all edges. Accordingly, these vertices in different elements can be assembled
together.

When developing the low-energy transformation for the prismatic and pyramidic ele-
mental domains a rotationally symmetric standard domain is clearly not possible. For the
prismatic element we adopt a standard region with two equilateral triangles connected by
edges of the same length as shown in Fig. 9. Developing the transformation matrix as dis-
cussed in Section 2.4 does not, however, guarantee that the shape of the transformed vertex
mode along the edge of a triangular face will be similar to the shape of the transformed
vertex mode along an edge which lies within a square face. Similarly we cannot guarantee
that the shape of a low-energy edge mode within a triangular face of the prism will be similar
to the shape of the low-energy edge mode within a triangular face of the tetrahedron. It is
perhaps not surprising that forming independent transformation matrices for tetrahedral and
prismatic regions leads to low-energy bases which do not have similar edge and face shapes.
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FIG. 9. Projected mode shapes within the standard prismatic region. The low-energy vertex function is shown
in (a) and can be compared with the original vertex basis shown in (b). The polynomial order wasP = 5.

These bases therefore could not be assembled into aC0 basis using the same connectivity
as the original analytic basis.

The similarity of the low-energy basis therefore needs to be preserved. Recognizing
that the original basis does have shape similarity we can maintain this similarity between
different elemental regions by using the information from the tetrahedral low-energy trans-
formation within the prismatic transformation. We therefore replace the edge and triangular
face components of the prismatic vertex transformation matrices (Rve & Rv f ) with the corre-
sponding components from the tetrahedral transformation matrices. We also modify all the
triangular face components in the prismatic edge transformation matrixRef with the corre-
sponding component from the tetrahedral transformation matrix. These operations require
us to identify edges and faces with similar local coordinates in the tetrahedral and prismatic
regions. Since, by design, the edge and face components of the analytic basis has similar
shapes this operation ensures that the low-energy basis also have similar shape symmetries.
Under this modification the only remaining components of the original prismatic low-energy
basis are those corresponding to the quadrilateral faces of the prism. We note that these com-
ponents are also not rotationally symmetric but the restrictions on prism orientation within
the computational meshes considered means that this lack of symmetry does not cause
any problems. A more general transformation matrix can be constructed from a family of
transformation matrices based upon the rotationally symmetric tetrahedral and hexahedral
elements.

In Fig. 9 we see the low-energy vertex modes shapes for the analytic and unmodified low-
energy prismatic basis. Clearly, modifying the low-energy prismatic basis to impose continu-
ity when using hybrid domains introduces another suboptimality operation. This adds to the
fact that we have ignored the mapping from a general element to the standard region. In Sec-
tion 3 we shall, however, demonstrate that it is still possible to achieve favorable numerical
conditioning.

2.6. Construction of the Preconditioner

To complete our discussion of the low-energy preconditioner we describe how the additive
Schwarz preconditioner is adopted in this work.
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The additive Schwarz preconditionerSprec can be defined as

Sprec= 5(S1)
−1
vv 5

T + RT

Diag[(S2)vv] 0 0

0 (S2)eb 0

0 0 (S2) f b


−1

R,

where5 is the vertex restriction operator, Diag[(S2)vv] is the diagonal of theS2 vertex
modes,(S2)eb is the block diagonal of the edge components and(S2) f b is the block diagonal
of the face components.

The initial component of the preconditioner requires the assembly and inversion of the
piecewise linear vertex block(S1)vv. This is readily available sinceS1 must be generated be-
fore constructingS2. The elemental transformation matrixR is then generated as discussed
in Sections 2.4 and 2.5 from which we can generate the elemental contributions(S2)eb and
(S2) f b.

We note that the construction of the low-energy basis discussed in Section 2.4 does not
ensure that the space of the wirebasket functions contains the space of constants. This is
undesirable from the point of view of preconditioning because of the dependence of the
condition number on the number of elements in the whole mesh. Nevertheless, since the
space of constants is already included in the space of original vertex functions, represented
by (S1)vv, the algorithm is scalable with respect to the number of elements.

3. RESULTS

3.1. Model Tests

In the first series of tests we consider uniform refinement in terms ofh and p on model
computational regions. We have considered the region−1≤ x, y, z≤ 1 and subdivided
the region into two, four, and six similar cuboids. These have then been divided into six
tetrahedrons or two prisms as shown in Fig. 10. We have also considered a hybrid region of
tetrahedrons and prisms as shown in Fig. 10g–i. We note that the global degrees of freedom
are identical in the tetrahedral, prismatic, and hybrid meshes for a given polynomial order if
the domains contain a similar number of cuboid regions. However, the number of boundary
degrees of freedom and therefore the rank of the Schur complement system is not similar.
The rank is approximately 50% larger in the full tetrahedral mesh as compared with the full
prismatic mesh at higher polynomial orders.

We have chosen to solve the Dirichlet Poisson equation with an analytic solution of the
form

u(x, y, z) = xyz
(
1− e−10(1−x)

)(
1− e−10(1−y)

)(
1− e−10(1−z)

)
.

Isocontours of the solution is shown in Fig. 10j for the 4× 4× 4 cube domains split into
tetrahedral, prismatic, and hybrid elements. Finally, the convergence for the tetrahedral,
prism, and hybrid element regions is shown in Fig. 10k on a semilog axis, where we see
that an exponential rate of convergence is achieved on all meshes. The polynomial order for
this convergence test and all subsequent tests in this section ranged over 2≤ p ≤ 8, which
is the current practical range used in our simulations.

For each of the computational domains shown in Fig. 10 we have considered the condi-
tioning of the low-energy preconditioned system in terms of polynomial order and uniform
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FIG. 10. Computational meshes. Tetrahedral domains: (a)Nel = 48 (b)Nel = 384, and (c)Nel = 1296. Pris-
matic domains: (d)Nel = 16, (e)Nel = 128, and (f)Nel = 432. Hybrid domains (g)Nel = 32, (h)Nel = 256, and
(i) Nel = 864. (j) Isocontours of solution. (k) Convergence ofL2 error with respect to polynomial orderP.

mesh refinement. Each of the following tests were performed using the Lanczos technique
with a standard preconditioned conjugate gradient solver [25] which generates a tridiagonal
matrix with a spectral distribution similar to the preconditioned system. The eigenvalues of
the tridiagonal matrix were then determined using a LAPACK routine. For low polynomial



412 SHERWIN AND CASARIN

FIG. 11. (a) Scaling of the tetrahedral mesh condition number as a function of the square of the logarithm of
polynomial order. (b) Ratio of solver time using low-energy preconditioning versus diagonal preconditioning.

orders on small meshes a minimum of 50 iterations were performed. The routine was also
validated against the full eigenvalue evaluation using a QR algorithm in LAPACK. In all
other tests the solution was iterated until theL2 residual was 1010 times smaller than the
vector on the right-hand side. All tests were performed on a dedicated SGI R10000 195 MHz
processor.

In Fig. 11a we see theL2 condition number of the low-energy preconditioned Schur
complement matrix as a function of the polylogarithmic scaling(1+ lg(P)2). From the
work of Pavarino and Widlund [20] we know that a polylogarithmic scaling of this form
is possible in a substructured solver in three-dimensional spectral elements (i.e., using a
Lagrange basis). Further from the work of Bica [1] we would also expect a polylogarithmic
scaling of this form since the role of the mapping, not considered in our low-energy basis,
is unlikely to play a significant role in such a regular domain. The polynomial fit to the
condition number of the diagonally preconditioned system based on the three highest poly-
nomial orders wasO(P3.3). Figure 11a also demonstrates that the uniform mesh refinement
increase in condition number for a fixed polynomial order is very slow. We expect it be
asymptotically independent of the mesh sizeh.

Also shown in Fig. 11b is a comparison of the relative CPU time to solve a diagonally
preconditioned system versus a low-energy preconditioned system where the CPU time
does not include matrix setup costs. The setup costs have not been considered as we are
interested in unsteady fluid dynamics solvers, where a solve can be called thousands of times
during a single simulation making the setup cost negligible for practical polynomial orders.
From Fig. 11b we observe that the low-energy basis breaks even at a polynomial order of
P = 4. By a polynomial order ofP = 8 the low-energy basis solve is three times as fast
as the diagonally preconditioned solver. This saving is a direct consequence of the lower
iteration count as a result of the significantly improved scaling of the condition number.
It should also be noted that part of the efficiency of the preconditioner results from the
addition of the coarse linear space preconditioning and not only the low-energy basis.

Figures 12a and 12b demonstrate similar tests for the unmodified low-energy prismatic
regions where shape symmetry has not been enforced along the edges. In Fig. 12a we again
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FIG. 12. (a) Scaling of the prismatic mesh condition number as a function of the square of the logarithm of
polynomial order. (b) Ratio of solver time using low-energy preconditioning versus diagonal preconditioning.

observe an asymptotic polylogarithmic trend in the conditioning of the low-energy system
as a function of polynomial order. The condition number atP = 8 is significantly lower
than the tetrahedral case although the rank of the matrix is also lower for a given polynomial
order. Further, when the mesh is refined from 4× 4× 4 cuboid blocks to 6× 6× 6 cuboid
blocks theh-scaling is independent of the mesh size. For this case the condition number di-
agonally preconditioned system scaled asO(P3.2) is based on the three highest polynomial
orders. Considering the CPU speedup of the low-energy preconditioning as compared with
the diagonal preconditioning for this case shown in Fig. 12b we see that the low-energy
basis breaks even at a polynomial order ofP = 3 and demonstrates a factor of 10 speedup at
P = 8.

Finally in Figs. 13a and 13b we apply the same test to the hybrid mesh of tetrahe-
dral and prismatic elements. For this test the prismatic low-energy transformation matrix

FIG. 13. (a) Scaling of the hybrid mesh condition number as a function of the square of the logarithm of
polynomial order. (b) Ratio of solver time using low-energy preconditioning versus diagonal preconditioning.
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FIG. 14. Geometrically complex hybrid domain of a distal arterial bypass graft. The domain is constructed
from a prismatic boundary layer region adjacent to the surface within which an unstructured tetrahedral mesh is
constructed. Also shown is the solution to a Poisson equationu(x, y, z) = sin(x) sin(y) sin(z).

was modified to maintain edge and face similarity with the tetrahedral basis. Unlike the
unmodified test cases shown in Figs. 11 and 12 the condition number only appears to fol-
low a polylogarithmic scaling of the form(1+ lg(P)2) in the 2× 2× 2 cuboid mesh. At
finer mesh resolution the condition number grows at a faster rate and the absolute values
of the condition number exceed the previous tetrahedral and prismatic tests for all values
of P. However, Fig. 13b demonstrates that the speedup of the low-energy preconditioner
over the diagonal preconditioner still breaks even at a polynomial order ofP = 4 and even
shows a sixfold speedup at a polynomial order ofP = 8 on the finest mesh.

3.2. Geometrically Complex Computational Domains

To finish our results section we shall consider a geometrically complex hybrid computa-
tional domain of practical interest as shown in Fig. 14. This figure illustrates the computa-
tional reconstruction of a porcine arterial bypass graft at the downstream, or distal, end of the
graft. The domain consists of an unstructured triangular surface discretization from which
prismatic elements are constructed by extruding the triangular surface elements in the sur-
face normal direction. The interior region is then discretized using tetrahedral subdomains.
The discretization shown in Fig. 14 consists of 749 prismatic and 1720 tetrahedral elements.

In our first test we again consider a Dirichlet Poisson equation with the solution
u(x, y, z) = sin(x) sin(y) sin(z). This is also shown in Fig. 14. The Lanczos technique
was applied to determine the condition number of the diagonal and low-energy precondi-
tioned systems. The results of this are shown in Fig. 15a. From Fig. 15a we see that the
diagonal and low-energy preconditioned systems scale approximately asO(P3) andO(P)
respectively in this polynomial range. The departure from the polylogarithmic scaling of the
low-energy preconditioner observed in the previous tests is presumably due to the Jacobian
of the mapping between the local and global element which was ignored in our low-energy
transformation. The improvement in condition number is also reflected in the speedup of the
back solve of the low-energy preconditioner over the diagonal preconditioner as shown in
Fig. 15b.

The tests were performed on eight processors of a SGI origin 2000 system and eight
processors of a PC Pentium III 500 MHz Beowulf system. From Fig. 15b we observe that a
speedup of approximately 6 was achieved on both systems at a polynomial order ofP = 8
and the breakeven polynomial order was approximatelyP = 3.
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FIG. 15. (a) Growth of the condition number of a diagonal and low-energy preconditioned problem as a
function of polynomial order on the computational domain shown in Fig. 14. (b) Relative CPU cost of the diagonal
preconditioner versus the low-energy preconditioner.

As previously discussed the motivation behind the development of the low-energy basis
was for application in a unsteady incompressible Navier–Stokes solver using a high-order
splitting scheme [2]. This algorithm requires the solution of three Helmholtz equations
and one Poisson equation. Once again considering the computational domain shown in
Fig. 14 we compared the CPU time for 20 time steps of the solver with the low-energy and
diagonal preconditioning starting with zero initial conditions. These tests were performed
on 16 processors of a Fujitsu AP3000. From Table I we see that at a polynomial order
of P = 3 that the low-energy preconditioner drops the average number of iterations to 30
from 157 iterations using a diagonal preconditioner. However, at this low polynomial order
the speedup is only 1.7. Nevertheless as we increase the polynomial order toP = 7 the
average number of iterations drops from 324 to 43 with an associated speedup of 5.3 as
the average time per step drops from 174 to 32 s. The tolerance for these tests was set at
1× 10−8 and the timings included all other operations necessary for the time integration of
the Navier–Stokes solver using the splitting scheme [2].

TABLE I

Average Iteration Count and CPU Time over 20 Times Steps

for the Diagonal and Low-Energy Preconditioners Applied to

the High-Order Splitting Scheme for the Solution to the Navier–

Stokes Equations

Diagonal preconditioner Low-energy preconditioner

Poly order Avg. iter. Avg. CPU time Avg. iter Avg. CPU time

3 157 5.38 30 3.19
4 194 13.16 32 5.6
5 237 40.37 33 10.22
6 278 99.64 35 18.74
7 324 174.36 43 32.60
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4. CONCLUSIONS

The transformation from an analytic unstructured expansion to a low-energy basis has
produced an efficient preconditioner for hierarchical spectral/hp elements. The efficiency
of the new basis is maintained by developing the transformation in a suitable, preferably
rotationally symmetric, standard region. This approach is quasi-optimal since it ignores the
Jacobian of the mapping to the physical elemental region. However, all of the computational
properties of the expansion are developed at the elemental level maintaining the local nature
of the algorithm. Further the connectivity information for the global assembly of the original
expansion is maintained.

The low-energy basis is amenable to block diagonal preconditioning provided the linear
subspace containing the space of constants is also included. Numerical tests performed in
model computational domains illustrate that a condition number which is polylogarithmic
with polynomial order can be achieved for tetrahedral and prismatic expansions. Modifica-
tions to the prismatic low-energy expansion, required to maintain the shape similarity of the
two elements regions, leads to an increase in the asymptotic rate of the condition number
scaling with polynomial order. Nevertheless a significant improvement in the conditioning
and CPU cost as compared with diagonal preconditioned was observed for polynomial
orders greater thanP > 4.

Numerical validation in geometrically complex domains were also performed and demon-
strated a similar improvement in conditioning and CPU times. Future improvements on the
strategy should identify areas where the Jacobian of the local to global mapping becomes
important.
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