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The development and application of three-dimensional unstructured hierarchical
spectralipelement algorithms has highlighted the need for efficient preconditioning
for elliptic solvers. Building on the work of Bica (Ph.D. thesis, Courant Institute,
New York University, 1997) we have developed an efficient preconditioning strategy
for substructured solvers based on a transformation of the expansion basis to a low-
energy basis. In this numerically derived basis the strong coupling between expansion
modes in the original basis is reduced thus making it amenable to block diagonal
preconditioning. The efficiency of the algorithm is maintained by developing the new
basis on a symmetric reference element and ignoring, in the preconditioning step,
the role of the Jacobian of the mapping from the reference to the global element. By
applying an additive Schwarz block preconditioner to the low-energy basis combined
with a coarse space linear vertex solver we have observed reductions in execution time
of up to three times for tetrahedral elements and 10 times for prismatic elements when
compared to a standard diagonal preconditioner. Full details of the implementation
and validation of the tetrahedral and prismatic element preconditioning strategy are
set out below. (© 2001 Academic Press

1. INTRODUCTION

The development of unstructured solvers based on the spbpteddiment method has
permitted a broader range of challenging problems to be addressed using automated |
generation. In the context of computational fluid dynamics these methods provide h
spatial accuracy and good phase properties when the solution is smooth; these prope
make them very suitable for incompressible flow problems.

We consider amp discretization wherel’ denotes the size of an elemental subdomair
and ‘p’ represents the polynomial order within each element. This discretization has be
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applied to the incompressible Navier—Stokes equations in three dimensions using a spli
approach [2]. After we apply a time discretization which decouples the viscous and invis
parts of the operator, the most computationally intensive parts of the solver are a serie
elliptic solves, namely one Poisson solve and three Helmholtz solves, which are perfort
at each time step. Each of these elliptic solves is preconditioned with an iterative subst
turing type domain decomposition method which takes advantage of the natural split
of the basis into interior, face, edge, and vertex basis functions. Currently once a suit:
computational mesh has been generated the limiting computational cost of the algorith
the solution of the four elliptic problems.

As noted by several authors, special care must be taken in three dimensions in ord
produce a method which is scalable with respedt #nd p. In this paper we consider a
preconditioning approach similar to that adopted by Mandel [3] for structured hexahec
domains and investigated for unstructured domains by Bica [1]. In the current investigat
we develop a set of numerically evaluated low-energy basis functions calculated by sol
alocal elliptic problem on a regular reference element. Unlike the approach of Bica, the I
energy basis functions are then applied to the global elements that constitute the solt
mesh. The resulting method is quasi-optimal in terms of iteration count and is compL
tionally efficient due to its local construction. The method is then extended to treat hyb
domains of tetrahedral and prismatic elements. We have demonstrated by numerical e;
iments that for the solution of a standard Poisson equation the low-energy preconditic
significantly reduces the number of iteration counts as well as produces improvement
up to a factor of 10 in the computational solve time for typical polynomial orders.

In Section 2 we discuss the change of basis from an analytically defined expansion [/
the new low-energy basis detailing the motivation behind the transformation and illustr
how to numerically implement the method. Section 3 then demonstrates some nume|
tests on both regular and irregular regions. In Section 4 we provide a summary of
conclusions.

2. FORMULATION
We consider the elliptic boundary value problem
V2u(x,y,2) + Au(x,y,2) = f(X, Y, 2) (1)

supplemented with appropriate Neumann or Dirichlet boundary conditions. As is stand
practice in the spectrdlp element method approach [5] we approximate our solution as
piecewise polynomial’ (x) using the Galerkin discretization of Eq. (1); i.e., fiade V¢
such that

L(v,u) = / Vol . VUl + Ul dx = / VEdx Vol e V. (2)
Q Q
The solution domai2 is assumed to be tessellated itNg nonoverlapping elemental re-

gionsQ2e of polymorphic shapes consisting of hexagons, prisms, pyramids, and tetrahedt
such that
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Each of the elemental regions is mapped to a standard region within which we constru
polynomial expansion.

The choice of the expansion base is relevant to the following discussion. Accordingly
is worth discussing the different approaches currently adopted in the spectral element
p-type finite element communities. The traditional approach within the spectral elems
community [6—8] has been to adopt a hodal tensorial expansion basis within structured ¢
domains (i.e., quadrilaterals or hexahedral elements). These bases are typically constrt
from Lagrange polynomials through Gauss—Lobatto—Legendre quadrature points. Wi
the p-type finite element community the typical approach for structured subdomains |
been to adopt a modal or hierarchical tensorial expansion basis. Typically these expan
bases, in one dimension, use the standard (nonhierarchical) linear, finite element m
which are then supplemented with hierarchical polynomial functions based on the integ
of Legendre polynomials [9—11] or equivalently Jacobi polynomials with weights of (1, :
[4,12].

For unstructured subdomains, such as triangles and tetrahedrons, the use of a stal
tensor product of one-dimensional expansions leads to a basis whose dimension is I
than the polynomial space supported by the expansion. Therefore such an approach w
lead to a redundant system (in terms of polynomial space) which can cause undesir
time-step restrictions when treating convectively dominated problems [13]. To gener
a nonredundant system within unstructured subdomains the use of modal expansion:
been preferred [4, 10, 12]. However, more recently nontensorial nodal bases for triang
regions have also been proposed [14-16].

As previously mentioned the following paper is based upon the doctoral work of Bi
who considered a modal expansion for tetrahedral domains [1]. A similar approach \
also proposed by Mandel for structured subdomains [3].

2.1. Change of Basis

The discussion in this section is independent of the particular polynomial basis be
used. We note however that in the remainder of this work we have adopted the basis def
in [5, 17, 18]; see Section 2.2.

Let ®; and®, represent two complete bases in the discrete spéicdle introduce the
two Helmholtz matricedd1, Ho such thatH4[i, j] = L1, ¢1j), whereg;; andgq; are
two arbitrary elements of basis,;; H is defined analogously.

Foru® e V?, let(i;; and(y be theith coefficients ou® when expanded in terms of the
two bases; i.e.,

dim(V?) dim(v?)

u(x) = Z Oai 3 (X) = Z (izj 2} (X). 3)

Since we have choseh;, ®, both to lie in the same discrete spa¢éwe can represent
one basis in terms of the other

dim(V?)

2j (X) = Z i g1 (X). 4)

whereg; is theith coefficient corresponding to the expansion megex) which when
summed over is identical to the expansion basgig; (x).
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Defining1(x) as the vector of bases functions (iga]i] = ¢1i (X)) and similarlyg; as
a vector of expansion coefficients (i.€[i] = ¢;i) then Eq. (4) can be written in vector
form as

@2) () = [@i]T p1(%).

We now introduce a matri€ whose rows are the vector®;] ". We note that this matrix
transforms from basi®; to ®, since

p2(X) = Cep1(X), (%)
wheregp;(x) is defined analogously tp1(x). Similarly the matrixC~* transforms the basis

D, 10 P1.
If we now write Eq. (3) in vector form to obtain

u = [01]" 1(x) = [G2] " 2(0). 6
where(4[i] = Oy, Gy[i] = Oy then substitute Eq. (5) into Eq. (6) we obtain
[01] 1) = [G2] " Cepa (%)
and so
0, = C . @)

The matrixC" can therefore be interpreted as a transformation from the expansion coe
cientsds to ;.
Finally recalling the bilinear energy &%, -),

L(u, u):/Vu-Vu+Au2dx
Q

we can express in terms of the Helmholtz matrices as
L(u, u) = [01]"H10; = [G2]"H0,.
Applying the transformation (7) we obtain
[02]" CH1C 0z = [02]"H202,

and soH, = CH;C" and equivalentiH,; = C"*H,C .

Notice that®; and®, could be bases of two different spadésc Vi, whereV, # V;.
The expressioll, = CH,C" would still be valid, butnoH; = C"*H,C™T, for rank defic-
iency reasons.

At this juncture it can be appreciated that although an initial choice of Bagisay lead
to an undesirable Helmholtz matrkx;, we can obtain a more suitable Helmholtz matrix
H, by an appropriate choice of the mati@or equivalently by transforming the basis.
The suitability of the matrix is related to the ease at which it can be preconditioned. Fr
the point of view of implementation, a block diagonal preconditioner can be an efficie
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choice. We are therefore motivated to defihiso that it results in a Helmholtz matrkx,
that is as near as possible to being block diagonal. In our case, we follow the work of Dr
et al. [19]; these authors have already observed, irhtlersion of the finite element, that
the theory points to a deterioration of the performance of the block diagonal preconditio
when applied to a problem in three dimensions. They propose adding a diagonal part tc
preconditioner, which acts on functions with small energy associated to the vertices. T
idea has been implemented for modal expansions in [20]. In this paper we adapt those i
and those of Bica [1] to the basis used in W&~ 7T ar code.

We are left with the question of how to determine the ma@ixFor convenience of
implementation the choice of our original bagisis usually based on an analytic definition
of a polynomial set, in a mapped region. However, it is unlikely that an optimal choice
C can be expressed in terms of another simple closed form polynomial basis. We there
accept that the new basi, needs to be generated numerically. The implementation:
efficiency of the spectrdip element method is derived from the decomposition of the
global expansion into elemental regions. It is essential that this property is maintainec
our new expansion basis,. The details of the numerical implementation will be discusset
in Section 2.4.1.

2.2. Decomposition of the Expansion Basis and Substructuring

Figure 1lillustrates the modal decomposition adopted in the current work. We assume
solution domain is decomposed into contiguous nonoverlapping elemental domains wi
are tetrahedrons in Fig. 1a. Within each elemental domain the solution is then expande
terms of a complete polynomial expansion of arbitrary order. The construction of a suita
expansion basis is essential to the efficient implementation of the numerical methods;
Section 2.1. As we are interested in solving second-order, partial differential equatic
when the elemental polynomial expansions are assembled into a global approximatior

FIG. 1. lllustration of the modal decomposition: (a) decomposition of the solution domain into tetrahedr
elements, (b) representative modes from a third-order polynomial expansion indicating vertex, edge, face,
interior modes.



PRECONDITIONING FOR SPECTRAbP ELEMENTS 399

require the resulting piecewise polynomial function to bélih This can be guaranteed by
using aC%-continuous expansion, which is obtained by decomposing the expansion b:
into interior and boundary modes, and matching the boundary modes across the intel
of the elements.

The interior modes are defined as having support within the interior of the elemental
gion. The boundary modes are the remaining modes required to ensure a complete expa
basis. The boundary modes are decomposed into three different components compr
vertex, edge, and face modes. Face modes are defined as having support on a single fa
the interior of the elemental domain and vanishing on all other faces, edges, and verti
Edge modes are defined as having support on a single edge, the adjacent faces, ar
interior of the elemental domain. An edge mode is therefore zero on all the other ed
nonadjacent faces, and at the vertices of the elemental domain. Finally, vertex modes
defined as having support at a single vertex and on the surrounding edges and faces
the interior of the element. A vertex mode is therefore zero on all nonadjacent edges
faces as well as the remaining vertices. The combination of vertex and edge modes
collectively known as the wirebasket frame. Under the above definition it does not ma
whether the expansion basis is modal or nodal although our motivation is to derive a g
preconditioner for the modal expansion basis. For a full definition of the modal expans
basis adopted in this work see [4, 5, 17].

Having defined the boundary and interior modes we can use the property of the expan
basis to decompose our linear algebra problem using a manipulation known as static |
densation or substructuring. The discrete form of our Galerkin problem (2) can be writ
in matrix form as

HO=f,

whereH is the Helmholtz matrix is the vector of expansion coefficients of the polynomial
approximation to the solution, anfdis the inner product of the forcing functiol(x) with

the expansion modes modified to incorporate the boundary conditions. If we now decomy
theH G andf into contributions associated with the boundary and interior modes we obt:

Hoo Hoi | [Op | | fb ®)
Hp Hi |G| [fi|’

where the subscriptsandi refer to the boundary and interior degrees of freedom, respe
tively. The boundary and interior degrees of freedom can be solved in a decoupled mai
if we statically condense the system by premultiplying Eq. (8) by

| —Hbi[Hii]_l
0 I ’
arriving at
Hop — Hui[Hil ™ Hip 0 | [ Gy | | fp — Hui[Hi]l 7 o
Hip H;ii G N f; ’ ©)

This technique, otherwise known as substructuring, allows us initially to solve the top r
of Eq. (9) for the boundary degrees of freedom. Having determined the boundary degree
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freedom(, we can use the second row of Eq. (9) to solve for the interior degrees of freed
;. From the point of view of linear algebra it is not evident that such a manipulation
advantageous. However, if we recall the definition of the interior degrees of freedom, wh
vanish on the elemental domain boundaries and within all other elemental domains,
can conclude that the matrik;; is block diagonal. Therefore this matrix is easily inverted.
Accordingly, the substructuring has reduced our problem to solving the boundary proble

Sl = [Hoo — Hpi[Hii ] *Hip]Gp = f, — Hei[Hii] 7,

whereS = Hpp — Hyi[Hii ] Hip is known as the Schur complement matrix.

The decoupling of the interior blocks also has the advantage that the Schur complen
matrix can be constructed at an elemental level. We can therefore iteratively solve the S
complement system and it is this system that we wish to precondition. For the Helmhc
problem (1) the matri¥ is positive definite providedl > 0. Since the Schur complement
is the stiffness matrix associated with a subspace of the space generated by the ori
basis, its condition number is bounded by the condition number of the full nidtaimd is
typically far better.

A disadvantage of this approach is the additional expense of constructing the Schur c
plement matrices. For a single matrix solve this can outweigh the advantages of solvir
better conditioned system. However, for our problem of interest, we wish to solve the n
trix system repeatedly as part of an unsteady solution to the Navier—Stokes equation.
computational cost of constructing and storing the Schur complement matrix is theref
outweighed by the number of solves. We remark that an alternative but equivalent interj
tation of the substructuring approach is that we have numerically changed the basis so
the boundary degrees of freedom are orthogonal to the interior degrees of freedom in
energy inner producf(, -).

We now wish to restrict our attention to preconditioning only the Schur compleme
system since the interior degrees of freedom are dealt with by a direct solver suck
Cholesky factorization. If we define our transformation ma@ias

[5?

and statically condense the matrix systdm= CH;C" we find that the Schur complement
of H, is related to the Schur complementtdf by

S =RSR',

whereS;, S, are the Schur complements ldfi andH,, respectively. Our task is now to
determine an appropriate choiceRf

2.3. Study of the Couplings between the Blocks of the Helmholtz Matrix

For a two-dimensional modal expansion, block diagonal preconditioning of the Sct
complement system leads to a preconditioned system with a condition number that gr
polylogarithmically with polynomial order[3, 21, 22]. This preconditioner uses the comple
block corresponding to all vertex modes and the diagonal blocks corresponding to the mc
along each individual edge. However, an analogous approach in three dimensions, w
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the preconditioner is constructed from the blocks of vertex, edge, and face modes, doe:
produce favorable results. Even considering the complete wirebasket space of all ve
and edge modes as a single block still does not produce a very effective preconditionel
we will see this is because the couplings between the face and the wirebasket parts ¢
Schur complement matrices are relatively strong.

In order to illustrate this point, we study the preconditioning of a single elemental tet
hedral region as previously studied by Bica [1]. A similar approach was also adopted
Babwkaet al. for the quadrilateral element [23]. We consider the Helmholtz problem (:
with A = 0 and construct the Schur complement matrix for a single reference elem
{-1<X,y,zX+Yy+z=< —1}. To ensure that we do not have a singular problem wi
apply Dirichlet boundary conditions to all vertex modes. We denote the Schur complem
with Dirichlet boundary conditions by

SDV _ [Suw Swf‘| ’
Stw  Stf

whereS,,,, denotes all the couplings between the wirebasket modes which just cont
the edges for this problen®:¢ contains all the couplings between the face modes ar
S.t = S}, represents the couplings between the wirebasket and face modes.

The first test we consider is the growth with polynomial order of the condition numb
of the matrix

SHARTIS
whereS,,,, ; 1
SIIJU) 0
Spwsft = [ 0 Sff]'

This test illustrates the relative importance of the coupling between the wirebasket
faces.

In the next test we consider a similar approach to determine the strength of the coup
between the four faces. If we I8k, +,, St,1,, St,1,, St, 1, be the block diagonals &py,
which correspond to the modes on each of the four faces, we can find the condition nun
of

1
StpStt,

where

0 0 0 Sy

Similarly, to determine the strength of the coupling between the edges we derfiig by
a diagonal block opy which corresponds to the modes within edgand compute the
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condition number of

—1
wasww7
where

Seee O O O
0 See, O O
0 0 Sy O
0 0 0 Su

A final test is to consider the full block diagonal decoupling, i.e.,

wa =

Sw%-&-beDV’
where
Swp O
Subtfb = l 0 Sfb].

The growth rate of thé , condition number 08,,} . ¢ Spy andS, 5., ¢,Spv as a function

ww-+ f f

of polynomial order is shown in Fig. 2 and the condition numbeBg}S,,, andS; St

are shown in Fig. 3. The condition number was evaluated as the ratio of the maximum
minimum eigenvalue which were computed using LAPACK [24]. From these figures it
evident that the strongest coupling is between the wirebasket and face modes and he

approximate asymptotic growth rate ©f P2°) as shown in Fig. 2.

In contrast the block diagonal preconditioning of the wirebasket and face modes is |
atively well behaved and the numerical tests indicate a potentially sublinear growth re
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FIG. 2. Condition number growth o8’ ;Spy andS,}. ;,Spv Vversus polynomial order. (a) Lin—lin axis

and (b) log-log axis.
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FIG. 3. Condition number growth 08,.S,,, and S;iS¢; versus polynomial order. (a)in-lin axis and
(b) log—log axis.

Clearly the objective of the change of basis will be to weaken the coupling between
wirebasket and face modes and this is the focus of Section 2.4.

Finally we note that these experiments are dependent upon the expansion basis; the r
shown in Figs. 2 and 3 have been obtained using the basis definedMdk& ar code
[5, 17].

2.4. Construction of the Low-Energy Basis

We recall that
S, = RSR'.

Adopting the notation introduced in Sections 2.1 and 2.2, and considering the experim
referred to in Section 2.3, our goal is to find a babisspanning the same space as oul
initial basis®,, which decouples the face mode contribution from the wirebasket mode
This decoupling would mak&, block diagonal, however, and to avoid a very expensiv
transformation we impose the additional requirement that only the edge and vertex funct
are modified in the change of basis.

Consider a single elemental matrix and the transformation of basis which arises frol
matrix R of the form

where we have assumed that vertex modes are listed first followed by the edge and
the face modes. The matricBse, R,¢ represent the modification of the vertex modes by
the edges and face modes. Similarly the maRixrepresents the modification of the edge
modes by the face modes. We note that this matrix has a very straightforward inverse
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to the upper triangular form of the matrix which is of the form

| —Rue _Ruf + RveRef
I —Ref
0 I

R'= 1|0
0

In the work of Bica [1] and Mandel [3] the submatik. was set to zero. For descriptive
convenience we define

where

sz[Rve va]v A=

I Ret
o 1|’

Now if we denote the original Schur complement of the Helmholtz matrix as

Siv Sie S

Sw  Suef e
Si=lg g | =[S S S
vef Setel Sit S& St

then under the change of baSis= RS,R" we obtain

_ Sw + R,Syef + SyefR! 4+ R,SerefR! [Spet + RISef,ef]AT (10)
A[S et + SerefR; | AScterAT 7
where
o [Seet RurSer +SerRly +RurSiRly Ser + R[S
ASciefA' = T : (11)
Set + St Ry Stt

If we consider the coupling between the vertex modes with the edge and face mo
shown in Eq. (10) we see that to completely orthogonalize these modes we require tha

SI,ef + Sef,efR;;r =0
or
R} = —SeierS] e- (12)

Similarly to decouple the edge modes from the face modes we see from inspecting Eq.
that

Rif = —SiSit (13)

We note that on an elemental region, the use of Eq. (13) corresponds to the use of ¢
modes with the same traces as the original ones, modified in the interior of the faces to
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the lowest possible energy within the polynomial space. However, decoupling the be
using Egs. (12) and (13) to forRwould destroy the boundary decomposition of the verte;
and edges modes. We recall from Section 2.2 that the edge modes are defined as h
support along a single edge and the two adjacent faces. The edge modes are therefore :
all vertices and along all other edges and faces. The USTarldh the Eg. (11) would create
a new basis where an edge mode would have support along all faces. This is not a prol
when treating a single element. The decomposition of the boundary modes is, howe
important when generating a piecewise continuous global expansion from an eleme
region. If we alter the support of the boundary modes, it becomes considerably harde
generate a global expansion from the elemental definitions. Apart from the issue of glc
assembly a change of basis of this form would also be extremely difficult to implement
a general mesh. This complexity arises from the fact that there can be a high multiplicity
face modes around any specific edge and so assembling the local m&fficesuld not

be significantly easier than directly inverting the problem.

To overcome these problems we need to reconsider the most appropriate decompos
for construction of our new basis. Reviewing the form of the edge modes we find that we:
decouple a specific edge only from its two adjacent faces if we do not wish to alter its supp
This type of local decoupling, however, does not circumvent the problem of multiple fac
being adjacent to any edge in a global mesh. Nevertheless if we consider the decouy
of the local faces from the edges within a standard symmetrical region we can then aj
the new, local basis to all global elements. This does, however, require that the shape o
new edge and vertex modes within adjacent faces maintains the same rotational symn
as the original basis. This can be ensured by using a rotationally symmetric standard re
provided the operator under consideration is isotropic. Using a standard region to consi
the basis means that we do not take account of the Jacobian of the mapping betwee
global element and the standard region. Accordingly the edges in the global mesh will
be completely decoupled from the surrounding elements. However, as we shall demons
from numerical tests, the new low-energy basis generates a Schur complement matrix w
can be spectrally approximated by its block diagonal contribution. Using the block diago
as a preconditioner therefore leads to a preconditioned system with a favorable cond
number which grows polylogarithmically with the polynomial order

Following a similar argument for the vertex modes we can locally decouple each ver
mode from the edges and faces which are adjacent to the vertex without destroying
assembly properties of the expansion. In other words, we orthogonalize the edge and v«
modes with respect to the face modes using an inner product based on the geomet
the standard region and disregarding the Jacobian of the mapping. The new functions
not be exactly orthogonal in the inner product induced by the global Helmholtz matr
but it will retain enough orthogonality for the new basis to be useful for block diagon
preconditioning. The remainder of this section will therefore focus on the construction
the locally decoupled edge and vertex modes.

2.4.1. Numerical construction of the low-energy transformation m&rixPerhaps the
most abstract aspect of the formulation so far is the determination of the transformation
trix Rin a numerical implementation. To illustrate this process we start from the assumpt
that we have already calculated the local Schur complement n@t(see [5] for further
details on this construction). As before we assume that this matrix is ordered so that
vertex modes are listed before the edge modes which are followed by the face modes.
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4

Vertices Edges Faces

FIG. 4. Numbering of vertices, edges, and faces within a standard region of an equilateral tetrahedron.

We introduce an edge and face numbering scheme for the standard rotationally symm
region of an equilateral tetrahedron as shown in Fig. 4. The construction of the subma
RI; to orthgonalize the local edge 2 from faces 1 and 3 is illustrated in Fig. 5. Initial
we extract the submatrices fro8y; corresponding to inner products of modes on face:
1 and 3 within themselves as well as the coupling matrix between the two faces. T
matrix of face coupling is then inverted and multiplied by the submatrice®] ptvhich
correspond to the coupling between edge 2 and faces 1 and 3. The nonsquare resl
matrix then forms a submatrix of transformation maﬂ&. Performing the same operation
for all six edges and their corresponding adjacent faces leads to the full constructior
RI; and involves only relatively straightforward operations once the m&iikas been
generated.

The assembly of the componemR$ of the transformation matrix as schematically il-
lustrated in Fig. 6, follows a similar construction. In this figure we have considered tl
construction of the submatrices corresponding to the coupling between vertex 1 with ec
1,2,4andfaces 1, 2, 4. For every vertex mode we have to construct and invert the subm
corresponding to the coupling betweenedges 1, 2,4 and faces 1, 2, 4 and then multiply th
the submatrix representing the coupling between vertex 1 and the adjacent edges and f:

One way of interpreting the low-energy edge modes is as the solution to the Sc
complement problem within the symmetric standard region. The boundary conditions
the problem are zero Dirichlet boundary conditions on the nonadjacent vertices, faces,
edges and a unit Dirichlet boundary condition on the mode under consideration. The solu

S, Sve Svf
S-\l;e See Sef

Sef Sﬂ'

FIG.5. Schematic representation of the construction of a submati® oforresponding to the coupling of
edge 2 with faces 1 and 3 as defined in Fig. 4.
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FIG. 6. Schematic representation of the construction of a submatrR paindR], corresponding to the
coupling of vertex 1 with edges 1, 3, 4 and faces 1, 2, and 3 as defined in Fig. 4.

to the problem or equivalently the shape of two low-energy modes is shown in Fig. 7.
Fig. 7a, zero Dirichlet boundary conditions have been imposed on face 1, edges 1, 2,
3 and vertices 1, 2, and 3 while a unit Dirichlet condition has been imposed on verte
The change in shape should be compared with the original projected vertex mode sh
in Fig. 7b. In Fig. 8 we show the scatter plot of the magnitude of the Schur complem:
of the original expansion bas®; and the low-energy basi®, = RS R' plotted on the
same scale. From this plot we see that the energy of the vertex modes in the orig
basis is noticeably higher than that of the rest of the diagonal contribution. Another stre
contribution, however, exists between the edge modes and vertex modes as denoted |
energetic contributions at the edge of the plot. In contrast the low-energy basis in Fig.
which has been scaled by a factor of 4, is far more diagonally dominated. We note
the diagonal face contribution is the same in both matrices. Both of these examples v
evaluated at a polynomial order Bf = 5.

(b)

FIG. 7. Projected mode shape of vertex 4 (a) low-energy and (b) original basis. The polynomial order v
P =5.
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(a) (b)

FIG. 8. Scatter plot of Schur complement matrices d® a 5 polynomial expansion: (a) Original basis and
(b) low-energy basis (scaled by a factor of 4).

2.5. Extension to Hybrid Subdomains

Although tetrahedral subdomains permit a greater flexibility in automatically generati
meshes, there are regions, such as the boundary layer of a viscous flow, where other gec
ric shapes are more attractive. If we use prismatic subdomains in the boundary layer wi
the triangular faces of the prisms touch the surface of the body the flexibility of automat
surface mesh generation is maintained but better resolution in the surface normal directi
provided. We therefore require low-energy bases for hybrid elemental regions consistin
tetrahedrons, prisms, pyramids, and hexahedrons for which conforming hierarchical b:
already exist [17, 18].

For an elemental region of any tetrahedral, pyramidic, prismatic, or hexahedral sh
the boundary transformation matifikcan be constructed in a way similar to the technique
described for tetrahedral elements in Section 2.4. The analytically defined boundary mc
applied within hybrid subdomains [17, 18] have similar modal shapes along edges and fa
This is necessary to enfore@® continuity in the global expansion with minimal effort.
We have seen that when developing the transformation mRtfor the tetrahedron, the
choice of a rotationally symmetric standard region is sufficient to ensure that the low-ene
expansion basis maintains shape similarity between edges and faces. For example, the !
of the low-energy mode on vertex 1 will have a shape similar to the low-energy mode
vertex 2 along all edges. Accordingly, these vertices in different elements can be assem
together.

When developing the low-energy transformation for the prismatic and pyramidic el
mental domains a rotationally symmetric standard domain is clearly not possible. For
prismatic element we adopt a standard region with two equilateral triangles connectec
edges of the same length as shown in Fig. 9. Developing the transformation matrix as
cussed in Section 2.4 does not, however, guarantee that the shape of the transformed \
mode along the edge of a triangular face will be similar to the shape of the transformn
vertex mode along an edge which lies within a square face. Similarly we cannot guarar
that the shape of a low-energy edge mode within a triangular face of the prism will be simi
to the shape of the low-energy edge mode within a triangular face of the tetrahedron.
perhaps not surprising that forming independent transformation matrices for tetrahedral
prismatic regions leads to low-energy bases which do not have similar edge and face sh:
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FIG.9. Projected mode shapes within the standard prismatic region. The low-energy vertex function is she
in (a) and can be compared with the original vertex basis shown in (b). The polynomial ordBrwés

These bases therefore could not be assembled i@fbtasis using the same connectivity
as the original analytic basis.

The similarity of the low-energy basis therefore needs to be preserved. Recogniz
that the original basis does have shape similarity we can maintain this similarity betwe
different elemental regions by using the information from the tetrahedral low-energy tra
formation within the prismatic transformation. We therefore replace the edge and triangt
face components of the prismatic vertex transformation matriRes( R, ) with the corre-
sponding components from the tetrahedral transformation matrices. We also modify all
triangular face components in the prismatic edge transformation nitriwith the corre-
sponding component from the tetrahedral transformation matrix. These operations rec
us to identify edges and faces with similar local coordinates in the tetrahedral and prism
regions. Since, by design, the edge and face components of the analytic basis has si
shapes this operation ensures that the low-energy basis also have similar shape symm
Under this modification the only remaining components of the original prismatic low-ener
basis are those corresponding to the quadrilateral faces of the prism. We note that these
ponents are also not rotationally symmetric but the restrictions on prism orientation wit
the computational meshes considered means that this lack of symmetry does not c
any problems. A more general transformation matrix can be constructed from a family
transformation matrices based upon the rotationally symmetric tetrahedral and hexahe
elements.

In Fig. 9 we see the low-energy vertex modes shapes for the analytic and unmodified |
energy prismatic basis. Clearly, modifying the low-energy prismatic basis to impose conti
ity when using hybrid domains introduces another suboptimality operation. This adds to
fact that we have ignored the mapping from a general element to the standard region. In
tion 3 we shall, however, demonstrate that it is still possible to achieve favorable numer
conditioning.

2.6. Construction of the Preconditioner

To complete our discussion of the low-energy preconditioner we describe how the addi
Schwarz preconditioner is adopted in this work.
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The additive Schwarz precondition8fc can be defined as
. -1
Diag[($2)w] O 0
Sprec = M(Sp,, " +RT 0 ()b O R,
0 0 i

wherell is the vertex restriction operator, Did§}),,] is the diagonal of thes, vertex
modes(S;)epis the block diagonal of the edge components @ggls, is the block diagonal
of the face components.

The initial component of the preconditioner requires the assembly and inversion of
piecewise linear vertex blods; ),,,. This is readily available sinc®& must be generated be-
fore constructings,. The elemental transformation matfds then generated as discussed
in Sections 2.4 and 2.5 from which we can generate the elemental contrib{&0gsand
(S2) tb-

We note that the construction of the low-energy basis discussed in Section 2.4 does
ensure that the space of the wirebasket functions contains the space of constants. Tl
undesirable from the point of view of preconditioning because of the dependence of
condition number on the number of elements in the whole mesh. Nevertheless, since
space of constants is already included in the space of original vertex functions, represe
by (S1),., the algorithm is scalable with respect to the number of elements.

3. RESULTS

3.1. Model Tests

In the first series of tests we consider uniform refinement in ternmsasfd p on model
computational regions. We have considered the regiér< X, y, z < 1 and subdivided
the region into two, four, and six similar cuboids. These have then been divided into
tetrahedrons or two prisms as shown in Fig. 10. We have also considered a hybrid regio
tetrahedrons and prisms as shown in Fig. 10g—i. We note that the global degrees of free
are identical in the tetrahedral, prismatic, and hybrid meshes for a given polynomial orde
the domains contain a similar number of cuboid regions. However, the number of bounc
degrees of freedom and therefore the rank of the Schur complement system is not sirn
The rank is approximately 50% larger in the full tetrahedral mesh as compared with the
prismatic mesh at higher polynomial orders.

We have chosen to solve the Dirichlet Poisson equation with an analytic solution of 1
form

u(x,y, 2) = xyz(1— e 100) (1 — g 10V (1 — g 10172,

Isocontours of the solution is shown in Fig. 10j for thex 4 x 4 cube domains split into
tetrahedral, prismatic, and hybrid elements. Finally, the convergence for the tetrahec
prism, and hybrid element regions is shown in Fig. 10k on a semilog axis, where we
that an exponential rate of convergence is achieved on all meshes. The polynomial orde
this convergence test and all subsequent tests in this section ranged=oyer28, which
is the current practical range used in our simulations.

For each of the computational domains shown in Fig. 10 we have considered the co
tioning of the low-energy preconditioned system in terms of polynomial order and unifor
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1 b Prisms 4
o Mixed
+  Tetrahedrons

2 3 4 5 L] 7 L]

=L
(j) el (k) Polynemial Order

FIG.10. Computational meshes. Tetrahedral domainsi{a)= 48 (b) Ne = 384, and (cNg = 1296. Pris-
matic domains: (dNg = 16, (€)Ne = 128, and (f)Ng = 432. Hybrid domains (gNe; = 32, (h) N = 256, and
(i) Ne = 864. (j) Isocontours of solution. (k) Convergencelgferror with respect to polynomial ordé.

mesh refinement. Each of the following tests were performed using the Lanczos techn
with a standard preconditioned conjugate gradient solver [25] which generates a tridiag
matrix with a spectral distribution similar to the preconditioned system. The eigenvalues
the tridiagonal matrix were then determined using a LAPACK routine. For low polynomi
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FIG. 11. (a) Scaling of the tetrahedral mesh condition number as a function of the square of the logarithr
polynomial order. (b) Ratio of solver time using low-energy preconditioning versus diagonal preconditioning.

orders on small meshes a minimum of 50 iterations were performed. The routine was «
validated against the full eigenvalue evaluation using a QR algorithm in LAPACK. In &
other tests the solution was iterated until theresidual was 1% times smaller than the
vector on the right-hand side. All tests were performed on a dedicated SGI R10000 195 M
processor.

In Fig. 11a we see thé, condition number of the low-energy preconditioned Schul
complement matrix as a function of the polylogarithmic scalihg- Ig(P)?). From the
work of Pavarino and Widlund [20] we know that a polylogarithmic scaling of this forn
is possible in a substructured solver in three-dimensional spectral elements (i.e., usil
Lagrange basis). Further from the work of Bica [1] we would also expect a polylogarithn
scaling of this form since the role of the mapping, not considered in our low-energy ba:
is unlikely to play a significant role in such a regular domain. The polynomial fit to th
condition number of the diagonally preconditioned system based on the three highest p
nomial orders wa® (P33). Figure 11a also demonstrates that the uniform mesh refineme
increase in condition number for a fixed polynomial order is very slow. We expect it |
asymptotically independent of the mesh dize

Also shown in Fig. 11b is a comparison of the relative CPU time to solve a diagona
preconditioned system versus a low-energy preconditioned system where the CPU f
does not include matrix setup costs. The setup costs have not been considered as w
interested in unsteady fluid dynamics solvers, where a solve can be called thousands of t
during a single simulation making the setup cost negligible for practical polynomial orde
From Fig. 11b we observe that the low-energy basis breaks even at a polynomial orde
P = 4. By a polynomial order oP = 8 the low-energy basis solve is three times as fas
as the diagonally preconditioned solver. This saving is a direct consequence of the lo
iteration count as a result of the significantly improved scaling of the condition numb
It should also be noted that part of the efficiency of the preconditioner results from t
addition of the coarse linear space preconditioning and not only the low-energy basis.

Figures 12a and 12b demonstrate similar tests for the unmodified low-energy prism
regions where shape symmetry has not been enforced along the edges. In Fig. 12a we
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FIG. 12. (a) Scaling of the prismatic mesh condition number as a function of the square of the logarithm

polynomial order. (b) Ratio of solver time using low-energy preconditioning versus diagonal preconditioning.

observe an asymptotic polylogarithmic trend in the conditioning of the low-energy syst
as a function of polynomial order. The condition numbePat 8 is significantly lower
than the tetrahedral case although the rank of the matrix is also lower for a given polynor
order. Further, when the mesh is refined from 4 x 4 cuboid blocks to 6< 6 x 6 cuboid
blocks theh-scaling is independent of the mesh size. For this case the condition number
agonally preconditioned system scaleda$3?) is based on the three highest polynomial
orders. Considering the CPU speedup of the low-energy preconditioning as compared
the diagonal preconditioning for this case shown in Fig. 12b we see that the low-ene
basis breaks even at a polynomial ordePof 3 and demonstrates a factor of 10 speedup &
P =8.

Finally in Figs. 13a and 13b we apply the same test to the hybrid mesh of tetra
dral and prismatic elements. For this test the prismatic low-energy transformation ma

a T T T T |.b5_

Condition Number
3
T
Relative solver cpu time

2 25

(1+1g(P))?

1

4

6

Polynomial Order P

FIG. 13. (a) Scaling of the hybrid mesh condition number as a function of the square of the logarithm
polynomial order. (b) Ratio of solver time using low-energy preconditioning versus diagonal preconditioning.
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FIG. 14. Geometrically complex hybrid domain of a distal arterial bypass graft. The domain is construct
from a prismatic boundary layer region adjacent to the surface within which an unstructured tetrahedral me:
constructed. Also shown is the solution to a Poisson equatieony, z) = sin(x) sin(y) sin(z).

was modified to maintain edge and face similarity with the tetrahedral basis. Unlike 1
unmodified test cases shown in Figs. 11 and 12 the condition number only appears to
low a polylogarithmic scaling of the forrel + Ig(P)?) in the 2x 2 x 2 cuboid mesh. At
finer mesh resolution the condition number grows at a faster rate and the absolute va
of the condition number exceed the previous tetrahedral and prismatic tests for all val
of P. However, Fig. 13b demonstrates that the speedup of the low-energy preconditic
over the diagonal preconditioner still breaks even at a polynomial order-ef4 and even
shows a sixfold speedup at a polynomial ordePof= 8 on the finest mesh.

3.2. Geometrically Complex Computational Domains

To finish our results section we shall consider a geometrically complex hybrid compu
tional domain of practical interest as shown in Fig. 14. This figure illustrates the compu
tional reconstruction of a porcine arterial bypass graft at the downstream, or distal, end of
graft. The domain consists of an unstructured triangular surface discretization from wh
prismatic elements are constructed by extruding the triangular surface elements in the
face normal direction. The interior region is then discretized using tetrahedral subdoma
The discretization shown in Fig. 14 consists of 749 prismatic and 1720 tetrahedral eleme

In our first test we again consider a Dirichlet Poisson equation with the solutic
u(x, y, z) = sin(x) sin(y) sin(z). This is also shown in Fig. 14. The Lanczos technique
was applied to determine the condition number of the diagonal and low-energy precot
tioned systems. The results of this are shown in Fig. 15a. From Fig. 15a we see that
diagonal and low-energy preconditioned systems scale approximat@lgR andO(P)
respectively in this polynomial range. The departure from the polylogarithmic scaling of t
low-energy preconditioner observed in the previous tests is presumably due to the Jaco
of the mapping between the local and global element which was ignored in our low-ene
transformation. The improvementin condition number is also reflected in the speedup of
back solve of the low-energy preconditioner over the diagonal preconditioner as show:
Fig. 15b.

The tests were performed on eight processors of a SGI origin 2000 system and e
processors of a PC Pentium Il 500 MHz Beowulf system. From Fig. 15b we observe th:
speedup of approximately 6 was achieved on both systems at a polynomial oRler 8f
and the breakeven polynomial order was approximaitely 3.
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FIG. 15. (a) Growth of the condition number of a diagonal and low-energy preconditioned problem as
function of polynomial order on the computational domain shown in Fig. 14. (b) Relative CPU cost of the diago
preconditioner versus the low-energy preconditioner.

As previously discussed the motivation behind the development of the low-energy b:
was for application in a unsteady incompressible Navier—Stokes solver using a high-o
splitting scheme [2]. This algorithm requires the solution of three Helmholtz equatio
and one Poisson equation. Once again considering the computational domain show
Fig. 14 we compared the CPU time for 20 time steps of the solver with the low-energy ¢
diagonal preconditioning starting with zero initial conditions. These tests were perforr
on 16 processors of a Fujitsu AP3000. From Table | we see that at a polynomial or
of P = 3 that the low-energy preconditioner drops the average number of iterations to
from 157 iterations using a diagonal preconditioner. However, at this low polynomial orc
the speedup is only 1.7. Nevertheless as we increase the polynomial ofidet to the
average number of iterations drops from 324 to 43 with an associated speedup of 5.
the average time per step drops from 174 to 32 s. The tolerance for these tests was ¢
1 x 108 and the timings included all other operations necessary for the time integratior
the Navier—Stokes solver using the splitting scheme [2].

TABLE |
Average Iteration Count and CPU Time over 20 Times Steps
for the Diagonal and Low-Energy Preconditioners Applied to
the High-Order Splitting Scheme for the Solution to the Navier—
Stokes Equations

Diagonal preconditioner Low-energy preconditioner

Poly order  Avg.iter. Avg. CPUtime Avg.iter Avg. CPU time

3 157 5.38 30 3.19
4 194 13.16 32 5.6

5 237 40.37 33 10.22
6 278 99.64 35 18.74
7 324 174.36 43 32.60
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4. CONCLUSIONS

The transformation from an analytic unstructured expansion to a low-energy basis
produced an efficient preconditioner for hierarchical spetipadlements. The efficiency
of the new basis is maintained by developing the transformation in a suitable, prefera
rotationally symmetric, standard region. This approach is quasi-optimal since itignores
Jacobian of the mapping to the physical elemental region. However, all of the computatic
properties of the expansion are developed at the elemental level maintaining the local né
of the algorithm. Further the connectivity information for the global assembly of the origin
expansion is maintained.

The low-energy basis is amenable to block diagonal preconditioning provided the lin
subspace containing the space of constants is also included. Numerical tests perform
model computational domains illustrate that a condition humber which is polylogarithn
with polynomial order can be achieved for tetrahedral and prismatic expansions. Modifi
tions to the prismatic low-energy expansion, required to maintain the shape similarity of
two elements regions, leads to an increase in the asymptotic rate of the condition nun
scaling with polynomial order. Nevertheless a significant improvement in the conditioni
and CPU cost as compared with diagonal preconditioned was observed for polynor
orders greater thaR > 4.

Numerical validation in geometrically complex domains were also performed and demq
strated a similar improvement in conditioning and CPU times. Future improvements on
strategy should identify areas where the Jacobian of the local to global mapping beco
important.
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